Kuroda's class number formula

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kuroda’s Class Number Formula

Let k be a number field and K/k a V4-extension, i.e., a normal extension with Gal(K/k) = V4, where V4 is Klein’s four-group. K/k has three intermediate fields, say k1, k2, and k3. We will use the symbol N i (resp. Ni) to denote the norm of K/ki (resp. ki/k), and by a widespread abuse of notation we will apply N i and Ni not only to numbers, but also to ideals and ideal classes. The unit groups ...

متن کامل

Special Cases of the Class Number Formula

Proof. Using that (Z/p)× is a cyclic group of order p − 1 (i.e. the existence of primitive roots), we see that there is a square root of −1 (that is, a non-trivial fourth root of 1) in (Z/p)× if and only if p ≡ 1 mod 4. Suppose now that p ≡ −1 mod 4, and suppose that α and β are two elements of Z[i] such that p|αβ. Then p = N(p)|N(α)N(β), and so (after relabelling if necessary) we may assume th...

متن کامل

On a Class Number Formula for Real Quadratic Number Fields

For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.

متن کامل

Lecture # 8 and 9 : Ideals and the Class Number Formula

There’s a different way to go about the problem of finding all ways of writing n = x + y. Recall that in the Gaussian integers Z[i] we have an automorphism α 7→ ᾱ. Thus the function Nα = αᾱ = x + y is multiplicative. Thus our question is just to find all ways of writing n as a norm from the Gaussian integers. To answer this question we need to know a little about the structure of Z[i]. (Note th...

متن کامل

The Dirichlet Class Number Formula for Imaginary Quadratic Fields

because 2, 3, and 1± √ −5 are irreducible and nonassociate. These notes present a formula that in some sense measures the extent to which unique factorization fails in environments such as Z[ √ −5]. Algebra lets us define a group that measures the failure, geometry shows that the group is finite, and analysis yields the formula for its order. To move forward through the main storyline without b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1994

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-66-3-245-260